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Shadow Removal Using Intensity Surfaces
and Texture Anchor Points
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Abstract—Removal of shadows from a single image is a challenging problem. Producing a high-quality shadow-free image which is
indistinguishable from a reproduction of a true shadow-free scene is even more difficult. Shadows in images are typically affected by
several phenomena in the scene, including physical phenomena such as lighting conditions, type and behavior of shadowed surfaces,
occluding objects, etc. Additionally, shadow regions may undergo postacquisition image processing transformations, e.g., contrast
enhancement, which may introduce noticeable artifacts in the shadow-free images. We argue that the assumptions introduced in most
studies arise from the complexity of the problem of shadow removal from a single image and limit the class of shadow images which
can be handled by these methods. The purpose of this paper is twofold: First, it provides a comprehensive survey of the problems and
challenges which may occur when removing shadows from a single image. In the second part of the paper, we present our framework
for shadow removal, in which we attempt to overcome some of the fundamental problems described in the first part of the paper.
Experimental results demonstrating the capabilities of our algorithm are presented.

Index Terms—Shadow removal, shading, color, texture, shadow detection, region growing, enhancement.

1 INTRODUCTION
THE problem of shadow removal has been studied by

researchers in many contexts: derivation of illumination
intrinsic images, reconstruction of photographic-quality
shadow-free images, improving performance of various
algorithms such as recognition algorithms, shadow matting,
etc. In this paper, we consider the following goal: Given a
single shadow image, produce a high-quality shadow-free
image which is perceived as having been acquired in the
same scene but without shadows.
Following the formulation in [1], an image Z(z,y) is
considered to be composed of the albedo R(z,y) and
illumination £(z,y) fields as follows:

where k € {R, G, B} and - denotes pixelwise multiplication.
Denoting L;(z,y) as the illumination field without
shadows, Li(x,y) can be expressed as

‘Ck(x’y) = ‘ék(x7y) : Ck’(‘r7y)7 (2)

where Ci(z,y) represents the shadow intensities or shadow
scale factors of channel k. This gives rise to the common
shadow image formulation:

Zk(xa y) = Rk(x7 y) : [jk(mvy) 'Ck(x>y)' (3)

Shadow removal is often performed in the log domain, thus
(3) is reformulated:

o The authors are with the Department of Computer Science, University of
Haifa, Haifa 31905, Israel.
E-mail: eliarbel@gmail.com, hagit@cs.haifa.ac.il.

Manuscript received 18 July 2009; revised 7 Jan. 2010; accepted 29 May 2010;
published online 18 Aug. 2010.

Recommended for acceptance by R. Ramamoorthi.

For information on obtaining reprints of this article, please send e-mail to:
tpami@computer.org, and reference IEEECS Log Number
TPAMI-2009-07-0461.

Digital Object Identifier no. 10.1109/TPAMI.2010.157.

0162-8828/11/$26.00 © 2011 IEEE

Ik(l‘,y) :Rk($,y)+ﬁk(l'7y)+0k(l',y)7 (4)
where I, R, ﬁ, and C are the logarithms of Z, R, ﬁ, and C,
respectively.

The classic approach to shadow removal in a single
image is to estimate the shadow scale factors, Ci(z,y),
whether explicitly in the image domain or implicitly in the
gradient domain, and then to remove the shadows by
canceling the effect of the shadow scale factors in the image
(by division using (3) or by subtraction using (4)).

While former studies have demonstrated impressive
results on specific examples, virtually all studies embody
assumptions under which the methods can be applied
successfully. These might include lighting conditions,
acquisition device properties, type and behavior of sha-
dowed surfaces, statistics of shadow pixels, and many
more. Consequently, most methods are capable of produ-
cing good results only on a subset of possible images,
namely, those in which the assumptions hold.

The goal of the first part of this paper is to provide a
comprehensive survey of the problems and challenges
related to shadow removal from a single image. As
demonstrated in this part, some of the issues are funda-
mental to shadow removal and have a significant influence
on the design of shadow removal algorithms, as well as on
the quality of the shadow-free images obtained by the
algorithms.

In the second part of the paper, we present a novel
framework for shadow removal which was developed in
light of the issues presented in the first part. We show that if
each image channel is considered as an intensity surface,
approximating the shape of the intensity surface in shadow
regions can aid in obtaining shadow-free images of high
quality, regardless of whether shadows are uniform or
nonuniform, and regardless of intensity surface geometry.
Furthermore, we show that this approach enables the
preservation of the original texture in shadow-free regions
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(d)

Fig. 1. Examples of uniform and nonuniform shadows. Plots show
intensity along the line marked in the image above. (a) Uniform shadow
cast on flat surface. (b) Nonuniform shadow cast on flat surface. Note
that the shadow is darker in the right part of the image. (c) Uniform
shadow cast on curved surface. The geometry of the surface is
preserved in the shadow region. (d) Nonuniform shadow cast on curved
surface. Intensity change is inconsistent with the curvature of the
surface.

and wide penumbra areas. As a final and independent step
in our shadow removal algorithm, we perform shadow-free
region enhancement, which aims at further improving the
quality of the final shadow-free image, reducing the effects
of noise and image processing transformations which may
introduce artifacts in shadow-free regions. Finally, although
we concentrate, in this paper, on the problem of shadow
removal, we also describe a simple and effective method for
shadow mask derivation. The process relies on minimal
user input that provides cues on shadow and nonshadow
surfaces, which are later used to classify shadow and
nonshadow pixels.

2 PROBLEMS AND CHALLENGES IN SHADOW
REMOVAL

In this section, we enumerate the various problems and
challenges related to the task of shadow removal. It is worth
noting that a given shadow image does not necessarily
include all of the phenomena mentioned below, and indeed,
in many of the images we explored only a subset of
phenomena occurs. However, in order to develop a robust
shadow removal algorithm which can effectively handle
shadow images acquired under different conditions and of
different scene types, any shadow removal algorithms
should account for the various types of possible phenomena
which may affect the final result.

2.1 Physical Phenomena

Physical phenomena occur in the physical world and
obviously affect the digital representation of the scene.

2.1.1 Shadow Intensity

A shadowed surface is a part of the surface which is
occluded from at least one direct light source in the scene.
As a result, a reduction in light intensity is observed in
shadow regions. Many methods attempt to remove sha-
dows by first estimating (either explicitly or implicitly) the
amount of intensity reduction in the shadow region (the
shadow intensity) and deducing the corresponding shadow
scale factors (ie., C(z,y) in (3)). The shadows are then
removed by applying the inverse transformation on the
shadow regions according to the shadow scale factors.
Two possible cases may be considered with respect to
shadow intensity: The first is where shadow intensity is
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Fig. 2. Umbra and penumbra of a shadow.

uniform in the shadow region, resulting in a uniform shadow.
The second case is where shadow intensities vary across a
shadow region, yielding a nonuniform shadow. See Fig. 1. The
phenomenon of varying shadow intensities usually occurs
due to ambient light and is most common in scenes where
the occluding object is close to the shadowed surface; thus,
less ambient light reaches the inner regions of the shadow
than the outer parts. Interreflections are another source of
nonuniformity of shadows and can be caused by the
occluding object itself or by other objects in the scene.

Determining shadow intensity usually involves estima-
tion of the shadow scale factor. In the case of a uniform
shadow, the scale factor is a single unknown; however, in
the case of a nonuniform shadow, the scale factor is
spatially varying and a per-pixel estimate must be
determined. Figs. 8a and 20b show the effects of incorrectly
assuming a uniform shadow when attempting to remove a
nonuniform shadow.

2.1.2 Umbra and Penumbra

A shadow region can be partitioned into umbra and
penumbra regions. Fig. 2 illustrates the formation of
shadow umbra and penumbra. The umbra of a shadow is
the part of the shadowed surface in which the direct light
source is completely obscured by the occluding object. The
penumbra of a shadow is the part of the surface where the
light source is only partially occluded. Shadow intensities
typically change smoothly in penumbra regions when
transitioning from the umbra to the nonshadowed region
of the surface. Penumbra occurs when the light source is not
a point source or due to diffraction of light rays caused by
the occluding object [2], [3].

Regardless of whether the shadow intensity is uniform
or not in the umbra, by definition, shadow intensities vary
in penumbra regions. The width of the penumbra, as well as
the rate of illumination change across the penumbra, varies
in a given shadow region and among different shadow
regions (consider Figs. 3 and 4). In some cases, penumbra
width is very small and difficult to detect in digital images,
in which case the penumbra is referred to as a hard shadow
edge. However, in many natural images, the penumbra is
noticeably wide; thus, special handling in the shadow
removal process might be required.

2.1.3 The Light Source

The type and shape of the light source is another factor which
may influence shadow removal algorithms. Algorithms that
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Fig. 3. Varying width of shadow penumbra. (a) Shadow image. (b) Plot
of penumbra width along the shadow boundary in the direction depicted
by the arrows in the left image.

assume a certain spectral power distribution, for instance, a
Planckian light source [4], may fail in handling indoor
shadow images acquired under artificial illumination. In
cases where the light source is not a point source or more than
one light source exists, as can occur in indoor images, for
example, complex soft shadows may appear (for example,
Fig. 22) that affect shadow removal algorithms considerably.

2.2 Scene Characteristics

In addition to the physical phenomena described above, the
nature of the acquired scene and the objects in it can also play
a crucial role in shadow removal. While it is fairly reasonable
toassume certain behavior of illumination, and subsequently,
of shadows, e.g., that shadow intensities inside the umbra are
locally constant [5], [6], it is unrealistic to assume global
behavior of all possible scenes. This implies that in the context
of shadow removal, the complexity of a shadow image is
derived virtually from the complexity of the acquired scene.
The type of surfaces in the scene, object geometry and
configuration, and their interaction with the light source all
have influence on shadow removal algorithms.

2.2.1 Self-Shadows and Shading

Shadows and shading take prominent roles in our visual
understanding of the world. They supply numerous cues
which assist in depth perception, object positioning [7], etc.
Our perception of object geometry is also greatly affected by
shading and illumination. In particular, it is the self-shading
which gives us the strongest cues about object geometry.
Since self-shadows and shading usually arise from a
direct light source and rarely by ambient light, they are

Fig. 4. Examples of different penumbra cross sections.
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Fig. 5. Shadow penumbra reconstruction—mean value is reconstructed
correctly but high-order textural information is lost.

absent in shadowed regions where the light source is
occluded, causing information loss in those areas. Remov-
ing the shadow does not restore the shading cues since the
information is inherently missing in the original shadow
image. In these cases, an unnatural shadow-free image is
often produced. An example is shown in Fig. 8b.

2.2.2 Complexity of Shadowed Surface

Several factors related to the surfaces upon which the shadow
is cast contribute to the complexity of the shadow removal
problem. First, algorithms that rely on mean pixel values may
fail in handling shadows that span different surfaces since
this implies differences of pixel value statistics.

An additional factor to consider is the textural content of
the shadowed surface. Since textured surfaces usually
incorporate high-order statistical information, removing
shadows from textured surfaces using a linear shadow
removal process might not yield satisfactory results. For
example, in addition to using scale factors for removing a
shadow from a given image, the variance and higher order
statistics must be reconstructed in the shadow-free region.
To further illustrate this, consider Figs. 8c and 8d. As can be
seen in these images, the mean values are correctly
reconstructed (using the scale factors approach), however,
the shadow-free regions still contain artifacts that require a
high-order reconstruction. Another example is shown in
Fig. 5, where the mean value is reconstructed in the
penumbra but high-order textural information is lost.

In addition, shadow surfaces with texture may undergo
various image processing transformations that would
require special handling in the shadow removal process.
This issue is further discussed in Section 2.3.

2.2.3 Geometry of the Shadowed Surface

Shadows cast on curved surfaces (e.g., the common case of
highlights and shadows on faces—see Fig. 28) might also
pose problems for shadow removal algorithms. Linear
methods that rely on first-order statistics can fail in
removing shadows on curved surfaces since first-order
statistics such as mean values vary across curved surfaces in
shadow regions as well as in nonshadow regions (see
Figs. 1c and 1d). An example of removing shadow cast on
curved surface using pixel statistics is given in Fig. 7.

2.2.4 Intersection of Shadow and Reflectance
Boundaries

The process of shadow removal invariably involves dealing
with the shadow boundary. This necessitates distinguishing
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Fig. 6. Example of intensity clipping in shadow pixels. The intensity
variation due to the brick texture in the shadow region along the marked
line is lost due to clipping and binning of dark values.

between shadow edges and reflectance edges. Reflectance
edges that cross or coincide with shadow edges (whether
sharp shadow edges or wide penumbra) must be restored
consistently with the same type of reflectance edges outside
the shadow. This difficulty is especially significant for
algorithms that work in the gradient domain since the
gradients in such edges are composed of both reflectance
and shadow changes [6], [8], thus requiring the algorithm to
modify only the shadow term of the shadow edge gradient.
Fig. 7 demonstrates the effect of information loss when
nullifying shadow gradients that intersect with reflectance
gradients. Note that shadows on textured surfaces fall into
this category as well.

2.3 Image Acquisition and Processing

The phenomena described above occur in the physical
world independent of the capturing device. In this section,
we describe issues related to the acquisition and digitization
pipeline which may influence shadow removal algorithms.

2.3.1 Capturing Device

Perhaps the most prominent influence of the capturing
device in shadow images is the presence of sensor noise
introduced in dark shadow regions, yielding low signal-to-
noise ratio. While this noise may be scarcely visible in the
original shadow image due to low intensities, it may be
enhanced by the shadow removal algorithm and strongly
affect the quality of the final shadow-free image (see Fig. 8c).
Information loss also occurs due to clipping of pixel
intensities caused by the limited range of camera sensors
(see Fig. 6), as well as by quantization of similar valued dark
points in shadow regions into the same quantization bin.
Shadow removal algorithms that scale the values in shadow
regions can not overcome the quantization effects and may
produce clipping artifacts and possibly false contours.

2.3.2 Postprocessing

All cameras, whether high or low end, perform some form
of image processing within the acquisition pipeline in an
attempt to produce high-quality and pleasing images. This
includes producing high-quality shadow images. The
acquisition pipeline typically involves processing such as
color balancing, tone mapping, and highlight and shadow
toning. While improving the quality of shadow images,
such transformations may pose challenging problems to
shadow removal algorithms. These transformations are
often inconsistent with the shadow model and the
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Fig. 7. Example of problems with gradient domain shadow removal from
curved surface. (a) Shadow image. (b) Shadow-free image obtained by
nullifying shadow gradients. Note that the text at the shadow boundary is
missing since reflectance gradients are also nullified. Also note that the
geometry of the surface is not preserved (consider the corresponding
cross section). This is due to the fact that the scale factor is estimated
using only first-order pixel statistics. (c) Shadow-free image obtained
using the method described in [9]. Note that the geometry and texture of
the surface is preserved since a high-order model is used without
nullifying image gradients.

processing used by shadow removal algorithms. Fig. 9
shows an example where image contrast enhancement of
the original image produces unpleasing contrast effects in
the shadow-free image.

In addition to the processing within the acquisition
pipeline, images are commonly compressed by the camera
into some standard output format—the most popular by far
being the JPEG compression standard. JPEG compression
introduces noticeable artifacts in images. While these
artifacts may be unnoticed in dark shadow regions, they
form a significant problem in shadow removal as their
appearance may be enhanced as a result of the shadow
removal process, as can be seen in Fig. 8d.

To conclude this section, we note that a rigorous
statistical analysis on the frequency and significance of the
affects described in this section is in order. Unfortunately, it
is beyond the scope of this paper. We note, however, that
the observations described in this section are based on our
experience with several hundred images. We have observed
that over 50 percent of the shadows are nonuniform
shadows, and most of them require postprocessing en-
hancement. Nonuniform shadows were found to be
common in scenes acquired at mid to short range with
more dominant affects in scenes with man-made structures.
Shadows rarely straddled more than one surface; however,
textured shadowed surfaces were found to be very
common. Penumbra width, in our images, varied between
2 pixels and 15 pixels (as in the soft shadows in Fig. 22).
Finally, we find that effects of image acquisition appear in
various combinations and affect shadow removal to various
degrees. The most difficult affect in our images was due to
image contrast enhancement, which required postproces-
sing enhancement.

3 REeLATED WORK

Shadow detection and removal has been approached from
numerous aspects including shadow detection and removal
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(@) (b)

Fig. 8. Examples of problems in shadow removal. (a) Removing nonuniform shadow assuming uniform shadow intensity. (b) Absence of self-shading
in the shadow-free region. (c) Enhancement of noise in the shadow-free region. (d) JPEG artifacts.

from multiple images and video sequences [10], [11], [12],
based on special camera filters [13], based on object
models—in the context of tracking, e.g., cars and pedes-
trians [14], [15], [16], [17], and shadow removal from
projected environments [18]. In this paper, we focus on
the most common use, namely, shadow removal from a
single image.

Shadow removal involves two basic stages: detection of
shadow regions, typically expressed in the form of detect-
ing shadow edges, and the removal of shadows from an
image. The shadow problems and issues described in
Section 2 affect both the detection and the removal of
shadows; however, in this paper, we focus on the removal

(a) (b)

Fig. 9. The effect of image processing on shadow-free regions.
(a) Details are enhanced in the shadow region, yet the image appears
natural and pleasing. (b) Removing the shadow yields an unnatural
image in which the contrast in the shadow-free region is inconsistent
with that of the nonshadow region, as depicted in the corresponding
cross sections.

of shadows, and the method presented in Section 4 assumes
that shadow boundaries are given. Methods for automatic
shadow detection in a single image can be found in [4], [19],
[20], [21]. A user-guided method for extracting shadow
regions is described in Section 6.

Shadow removal methods for a single image can be
classified into two categories: methods operating in the
gradient domain [4], [6], [8], [22], [23], [24], [25] and
methods operating in the image intensity domain [5], [9],
[26], [27], [28], [29], [30], [31].

Shadow removal based on the gradient domain was
suggested by Finlayson et al. [4], [23]. The core idea in these
studies is to nullify gradients of shadow edges and then
reconstruct the shadow-free image by integration, assuming
a certain type of light source and special properties of camera
sensors. In [24] and [25], studies that relax the camera
properties assumption are presented. While making a big
leap in automatically removing shadows from a single
image, this approach suffers from an inherent problem of the
gradient-based shadow removal algorithms, which is related
to the global integration step [10]. The integration usually
results in artifacts such as changes in color balance and
global smoothness of the reconstructed image (see Fig. 26).
Being aware of the problems due to global integration,
Fredembach and Finlayson [22] suggested a shadow
removal algorithm in which 1D integration is performed
instead of global integration.

Although impressive results are presented, the nullifica-
tion of shadow edge gradients causes textural information
loss in penumbra regions that must be restored artificially,
whether by nullified gradients [4] or in-painting [22], [23].
Removal of shadows cast on curved surfaces with wide
penumbra regions is also strongly affected by nullification
of shadow edges. Fig. 7 shows an example of shadow
removal from a curved surface using nullification of
shadow boundary gradients.
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In an attempt to develop shadow removal algorithms
based on the gradient domain that preserve textural
information in penumbra regions, Xu et al. [6] and Mohan
et al. [8] suggested shadow removal methods which
naturally extend that of Finlayson et al.’s in [4]. The method
described in [6] reconstructs the penumbra regions by
clipping large gradients, assuming that they are due to
object boundaries, whereas small gradients are due to
changes in illumination. In [8], the authors suggest a user-
guided approach which tries to model soft shadow edges in
the intensity domain by assuming symmetric, sigmoidal-
like behavior of shadows across penumbra regions (con-
sider Fig. 4 for a counter example), and then using the
derivatives of the shadow model to remove gradients that
are due to shadow boundaries.

While the examples given in [6] and [8] (see Fig. 26) show
that the methods are effective in handling shadows with soft
boundaries, being based on the gradient domain introduces
inherent problems with the approach. The gradient domain
methods for shadow removal modify only the gradients in
penumbra regions; thus, these methods cannot handle
nonuniform shadows as this implies changes in illumination
inside the shadow region, and not only at the shadow
boundaries, as assumed by these methods. Since postacqui-
sition image processing transformations may introduce
artifacts in umbra regions, these gradient-based algorithms
do not handle such artifacts as well.

Another approach to shadow removal from a single image
is based on the intensity domain. A simple intensity domain
shadow removal method was proposed by Baba et al. [27]
and [28]. The method is based on color and variance
adjustment of shadow pixels in RGB space, assuming a
single flat texture shadow surface.

The authors of [32] describe a method in which light
occlusion factors are used for shadow removal. Occlusion
factors are estimated in the intensity domain and further
smoothed in the gradient domain to obtain a smooth
shadow mask. The initial estimation of the occlusion factors
is obtained by assuming planar and roughly constant-value
surfaces on which shadows are cast.

Two intensity domain methods have been proposed by
Finlayson et al. [29], [26]. In the study described in [29], the
Retinex theory is employed for shadow removal where
large changes in intensities which are due to shadow
boundaries are ignored in the Retinex computation. The
method in [26] is based on the estimation of shadow scale
factors assuming uniform shadow intensities and hard
shadows. Both methods use in-painting for completion of
missing information in shadow boundary regions.

In [31], a method for shadow removal that uses a Pulse
Coupled Neural Network is presented. As with the studies
of [26], [27], [28], this method relies on first-order statistics
for determining a single scale factor of shadow regions, and
thus cannot properly handle nonuniform shadows and
shadows cast on curved surfaces.

Wu et al. [5], [30] described a method for shadow
removal in the context of shadow matting. The authors
suggest a method that estimates shadow intensities based
on shadow and nonshadow intensity ratios in the umbra,
and use a Bayesian framework for regularization of shadow
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scale factors in the umbra and penumbra regions. The
method is capable of removing soft shadows while
preserving texture at shadow boundaries, assuming
roughly uniform shadow in umbra regions.

Another intensity-based method for shadow removal
which is capable of handling shadows with wide penumbra
cast on textured and curved surfaces was proposed in our
earlier study [9]. We suggested a model in which pixel
intensities in the image form a so-called intensity surface
and, by assuming uniform shadows, the proposed method
finds shadow scale factors using a high-order model,
namely, cubic smoothing splines across penumbra regions.

Although high-quality results have been demonstrated
by some of the studies described above, they do not seem to
handle some of the fundamental problems described in
Section 2, namely, nonuniform shadows, curved and
textured surfaces, etc. Furthermore, in our experiments,
we observed that many shadow images undergo post-
acquisition transformations which severely affect the final
shadow-free results. Previously suggested shadow removal
methods do not address this problem at all.

In this paper, we suggest a novel shadow removal
algorithm which is capable of handling nonuniform
shadows, as opposed to our previous work in [9] that can
only handle uniform shadow. Our suggested algorithm can
handle shadows cast on flat or curved surfaces which may
also be textured. Note that by curved surfaces we refer to
surfaces where pixel intensities vary considerably across the
surface, regardless of the actual form of the surface in the
physical scene (for example, consider Figs. 1c and 1d). In
addition, we outline an approach for enhancing shadow-
free regions containing artifacts of postacquisition transfor-
mations and noise.

4 SHADOW REMOVAL

Shadow removal is typically performed in two stages: 1) the
detection stage in which shadow regions are detected,
specifically by determining the shadow boundaries, and
2) the reconstruction stage in which the shadow is actually
removed and a shadow-free image is produced. In this
section, we suggest a novel reconstruction stage for shadow
removal, i.e., removing the shadows in an image once they
have been detected. Any shadow detection algorithm can be
used, but since our method is not confined to images with
certain illumination conditions such as outdoor scene
images, one could use a shadow detection algorithm that
best suits the illumination conditions in a given image.

The main theme in our approach is the notion that image
data should not be nullified at any stage of the process;
rather, image content should be preserved and, if necessary,
modified. In addition to the unpleasing global effects in the
image, the gradient-based methods often produce irrecov-
erable artifacts along the shadow edge (see Fig. 5), and they
only modify the gradients of penumbra regions. We require
that our method be capable of dealing with nonuniform
shadows, i.e., modify the gradients in umbra regions as
well. Thus, we use an intensity rather than a gradient
approach. We also require that our method be able to
handle varying penumbra width as well as profile and
shadows on curved and textured surfaces.
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Fig. 10. Stages of the proposed method. (a) Original. (b) Shadow mask. (c) Penumbra mask. (d) Anchor points. (e) Reconstructed intensity surface.
(f) Shadow scale factor image. (g) Shadow-free image before enhancement. (h) Final shadow-free image following region enhancement.

The proposed method for shadow removal is based on
our previous method described in [9] in which Cubic
smoothing splines are used across the penumbra regions for
finding the correct scale factor. The method in [9] assumes
similar pixel intensities on both sides of the shadow
boundary; thus, it is capable of removing uniform shadows
only. This presents a significant restriction on shadow
removal as uniformity cannot be assumed in many scenes.
Fig. 20 shows the failure of the method in [9] when shadows
are nonuniform. In this paper, we follow the same model as
in [9], where pixel intensities form an intensity surface.
However, we adopt a global encompassing approach that
computes the entire intensity surface concurrently. Using a
single model for approximation of shadow regions allows
an estimate of a per-pixel scale factor, i.e., handling nonuni-
form shadows. This approach accommodates penumbra of
varying width and profile and is able to deal with shadows
on curved surfaces as well as preserving texture across
shadow boundaries.

4.1 Algorithm Summary

Algorithm 1 outlines the steps and the general data flow of
the shadow removal algorithm described in this paper. The
various steps of the process are detailed in the following
sections. Fig. 10 shows the stages of the algorithm
implemented on a shadowed image.

Algorithm 1. Shadow removal algorithm flow

Input: I - RGB image

Output: Ispadowrree - Shadow-free RGB image

: {ShdwPix, NonShdwPix} < getUserShadowPix(I)
:{M,, M,} < getMasksBySVM(ShdwPix,NonShdwPix,I)
: M, & MRFpenumbraLabel(M,I;.) // M, C M,

: {Ms, MT} <« getAnchorPointsMasks(;, M,, I)
Sedge <= EdgeDetector(M)

:for k€ R,G,B do

C’k(x, y) <= calcScaleFactors(M,, M., I;)

Cr(z,y) < fillNonAnchorPixels(ék(a:, y))

® N U WN

9: Ci(z,y) < directionalSmooth(M,, Seige, Cr(z, y))
10:  Ipized <= applyScaleFactors(ly, Cy(z,y))
11: Ik<:]\/[9[F,Tde(1—ZVL)I]¢
12: end for
13: I < IpRUlgUlIp
14: Ishadowrree <= shadowFreeRegionEnhancement(])

The algorithm proceeds as follows: The user marks
shadow and nonshadow coordinates interactively on the
input image (line 1). The selected RGB values are then used
for shadow and nonshadow mask extraction, using SVM and
region growing as described in Section 6 (line 2). Using MRF
labeling [9] (see the Appendix), the penumbra mask is
calculated from the shadow mask and image (line 3). Given
the shadow and surround masks, anchor point selection is
performed as described in Section 4.4 (line 4). Finally, shadow
edges are extracted from the shadow mask (line 5) to be used
later for directional smoothing of penumbra scale factors.

The core of the process is the shadow removal phase,
which consists of several steps (lines 7-11) applied to each
channel independently (following the description in
Sections 4.2 and 4.3). First, the shadow scale factors in
the umbra M, are calculated, as well as an initial estimate
of the scale factors in the penumbra M, using the intensity
surface approximation method and (7)-(10) (lines 7 and 8).
Directional smoothing of the shadow scale factors within
the penumbra is then performed (line 9) using the shadow
edge information extracted in line 5 (see Section 4.5). The
shadow in the image is removed by adding the channel
image with the scale factors image as in (4) (line 10) and
combining with the original nonshadow pixels (line 11).

The three processed RGB channels are combined to
produce a shadow-free image (line 13). The final shadow-
free image is produced by applying the shadow-free region
enhancement algorithm described in Section 5 (line 14).

4.2 Intensity Surface Approximation

The main part of the proposed shadow removal process
involves the estimation of the shadow scale factors C(z,y)
in (4) (lines 7-11 in Algorithm 1). Solving for C(z,y) in (4) is
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Fig. 11. An example of an approximated shadow-free intensity surface. (a) Synthetic image of sphere with shadow. (b) Shadow mask. (c) Surround
mask. (d) Intensity surface of the shadow image. (e) Intensity surface of the approximated shadow-free surface. Note that the approximated surface
is smooth in the shadow region and correctly exhibits the sphere geometry. (f) Reconstructed shadow-free image.

an ill-posed problem and a smoothing constraint must be
introduced. This is performed by considering the p1xe1
intensities of each channel as forming an intensity surface'
(see Figs. 11d and 12b) and deriving a smooth approxima-
tion of the shadow-free intensity surface within the umbra
and penumbra regions from which smooth shadow scale
factors can be determined. The approximation is obtained
using a thin-plate surface model (e.g., [33], [34], [35], [36]).

Let M, and M, denote shadow and surround masks,
respectively (Figs. 11b and 11c). Note that M, should
include both umbra and penumbra regions of the shadow.
We assume that a surround mask exists and is wide enough
to capture scene statistics, and that not all shadow
boundaries coincide with reflectance boundaries.

Denote by z = f(z,y) the shadow-free intensity surface
represented by a smooth thin-plate surface in the shadow
region. We define an energy function on f that measures the
smoothness of the surface:

/ / (8x2>2 <88;5fy>2+<ng> daedy,  (5)

where (2 is the spatial domain over which f is defined (in
our case, M;UM,). Thus, a good approximation of a
shadow-free intensity surface is one that minimizes FEj,
i.e., finds a smooth surface with minimal curvature, in the
shadow region.

The approximated surface should coincide with the
intensity surface in the nonshadowed regions surrounding
the shadow (M,). Thus, the following data term is
minimized over the surround pixels defined by mask M,:

// w(z,y) - [f(z,y) — I(2,y) dzdy,

- (6)
w(z,y) = {07 (z,y) € M,

otherwise.
Approximation of the shadow-free intensity surface is
found by solving the following functional:

f=argmin  Ey(f) + Ea(f). (7)
i

A scale factors field can then be calculated over the mask M,:

C('Tvy) :I(i’,y) _f(xvy) (8)

from which a shadow-free image can be derived.

1. Note that the intensity surface describes the change in pixel values and
not necessarily the surface geometry, although the two are correlated.

An example is shown in Fig. 11. The reconstructed
approximated surface f follows the global geometry of the
intensity surface, emphasizing the advantage of using the
thin-plate model in reconstructing shadow-free images in
cases of shadows on curved surfaces as well as nonuniform
shadows, as can be seen in Figs. 24c and 21.

4.3 Textured Surfaces

Consider the textured surface in Fig. 12a. Solving (7), a
smooth intensity surface f is obtained at pixels in M;
(Fig. 12b). Although the global geometry of the shadow-free
surface is obtained, f poorly approximates the desired
shadow-free intensity surface as the textural information of
the shadow region is lost. Accordingly, applying (8)
produces a nonsmooth shadow factors field C(z,y), as
shown in Fig. 12¢, and an incorrect shadow-free reconstruc-
tion. This case often arises in shadow images, namely, when
shadows are cast on textured or highly structured surfaces.

The approach taken in this study is to carefully select
anchor points in M, and M, on which the thin-plate
minimization will be applied. Specifically, anchor points in
M, and M, should originate from the same intensity
distribution, thus supplying the same information source
within the shadow and outside the shadow. A schematic
description is shown in Fig. 13. A cross section of the
intensity surface of Fig. 12a (blue) is overlaid with the
corresponding cross section of the smooth intensity sur-
face f obtained naively based on all surround pixel points
M, (black curve)—Fig. 13a (top). Due to the textured
content in the shadow region, the resulting scale factors
C(z,y) are not smooth—Fig. 13a (bottom). Carefully
choosing corresponding anchor points in M, and M,
produces a smooth intensity surface (red) and a smooth

(©

Fig. 12. Intensity surface reconstruction with texture. (a) Synthetic image
of noisy sphere with shadow. (b) Intensity surface of the approximated
shadow-free surface. (c) The shadow scale factors. Note that the
approximated surface is smooth, creating a nonsmooth shadow scale
factor field.
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(a) (b)

Fig. 13. Approximating a textured surface using several sets of anchor
points. (a) Cross section of textured curved surface with shadow region
(blue) overlaid with the corresponding cross section of the recovered
smooth intensity surface f (black). The resulting scale factors field
C(x,y) is shown below. (b) Selection of appropriate anchor points in M
and M, results in a smooth f (red) and a smooth scale factors field
shown below. Three intensity surface reconstructions based on three
sets of anchor points are shown. The recovered intensity surfaces differ,
but the resulting scale factor fields shown below are consistent.

scale factors field—Fig. 13b. An extension to this approach
would involve using several disjunct sets of anchor points,
each of which produces an approximate intensity surface
and corresponding partial scale factor field as shown in
Fig. 13c (green and purple). Note that the intensity
surfaces differ between sets of anchor points; however,
the scale factor field should be consistent. A more robust

scale factor field C(z,y) can thus be obtained.

Denote by M, and M, the masks representing the
collection of anchor pixels in the shadow and surround
area, respectively. Replacing M, and M, in the approxima-
tion process described in Section 4.2, (7) is applied using the
new masks M . and M » and using

p— 1’ ('7;7 y) E MT?
wiz,y) = {0, otherwise. ©)

The scale factors field is then obtained using (8) applied
only on pixels in M, and M,. This produces a smooth yet
incomplete scale factors field C(z,y). To compute the
complete scale factors field C(z,y), the missing values in
C(z,y) (associated with pixels in M, — M,) must be
reconstructed. The thin-plate approach is used again and
a functional, similar to (7), is computed with

(d
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Euf) = [ [ et [Cla) = Clan)] dady,

; (10)
M%w:{L(%weM&

0, otherwise.

This step guarantees a smooth C(z,y) field in the umbra
due to the smoothness term E; in (7).

An example is shown in Fig. 14. Considering pixels of
varying intensities (bright brick pixels and dark pixels
between the bricks) as data points for the thin-plate
minimization produces a nonsmooth scale factors field
C(z,y) (Fig. 14d (top)). Naively smoothing C(x,y) and then
applying to I(z,y) yields unsatisfactory results and intro-
duces Mach-Band-type artifacts in the shadow-free image at
the shadow boundaries and in textured regions, as can be
seen in Fig. 14e. Selecting appropriate anchor points,
originating from the bricks alone and not from the dark
pixels between the bricks, produces the new masks M s and
M, (Figs. 14b and 14c (bottom)) and results in a smooth
scale factors field C(z,y) (Fig. 14d (bottom)) and a pleasing
shadow-free image (Fig. 14f).

4.4 Anchor Point Selection

Selecting the appropriate anchor points is based on the
assumption that shadows preserve monotonicity of pixel
intensities in the umbra, i.e., the order of two nonshadowed
pixels with respect to their intensities does not change when
the pixels are shadowed. Exploiting this property, we
derived a simple heuristic that allows us to select anchor
pixels that correctly maintain the smoothness of C(z,y). The
histograms of the original M, and M, pixel values are
calculated. Based on the monotonicity property, these two
intensity distributions should display strong correlation, as
shown in Fig. 15, displaying the histograms associated with
the shadow and surround of Fig. 14a. A collection of pixels in
shadow (1/;) and surround (M,) that are likely to have
originated from the same source is chosen by selecting
correlating pixels in these histograms. A histogram shaping
approach can be adopted; however, we found that it is
sufficient to simply select pixels in both M, and M, with
occurrence probability above a specific threshold. In Fig. 14a,
pixels with probability above 0.5 were considered as anchor
points (marked by dashed lines in Fig. 15). These collections
of pixels define new shadow and surround masks M < and

(e) ()

Fig. 14. Shadow removal using anchor points. (a) Shadow image. (b) and (c) Top: Shadow mask M and surround mask /.. (d) Top: Resulting scale
factors image, C(z,y). Note the undesirable high-frequency content due to the dark pixels between the bricks. (e) Naively smoothing the scale
factors image results in a shadow-free image containing Mach bands and slightly smoothed texture in the shadow-free region. (b) and (c) Bottom:
Carefully selecting anchor points in shadow and surround produces new shadow and surround masks M and M. Note that the dark pixels between
the bricks are not included. (d) Bottom: Resulting smooth scale factors image C(z,y) based on anchor points. (f) Resulting shadow-free image.
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Fig. 15. Histograms associated with the shadow (blue) and surround
(red) of Fig. 14a. Correlating pixels in these histograms are chosen as
anchor points for the shadow and surround masks. Specifically, pixels in
M, and M, with occurrence probability above 0.5 (marked by dashed
lines) were chosen.

M, and are used as anchor pixels in the intensity surface
estimation (see Figs. 14f and 14g). It can be seen that the
darker pixels between the bricks have been discarded and
are not used as anchor points.

4.5 Determining Penumbra Scale Factors

The assumption of scale factor smoothness and the
assumption of monotonicity of pixel intensities (used for
extracting anchor points) do not hold in the penumbra. As a
consequence, the method described in Sections 4.2-4.4
produces artifacts in the penumbra regions. An approach
to overcome these problems is by attempting to smoothly
model the penumbra and then calculate a smooth scale
factors field using the substraction scheme of (8). Smooth
modeling of penumbra profiles was suggested in [8] in
which the authors assume a symmetric, sigmoidal-like
shape of penumbra cross sections. However, as can be seen
in Fig. 4, profiles of penumbra regions do not follow a
particular model such as linear or sigmoidal. In the
proposed method, instead of assuming or modeling a
specific penumbra profile, we only assume that scale factors
in penumbra regions are locally smooth in the direction
tangent to the shadow edge.

Given the penumbra mask M, (we use MRF labeling for
determining the penumbra mask; see [9] for details and a
summary in the Appendix) and given the reconstructed
intensity surface f, penumbra scale factors are determined
as follows: An initial estimate of the penumbra scale factors
is obtained by applying (8) restricted to pixels in M,. To
enforce local smoothness of the penumbra scale factors field
in the direction tangent to the shadow edge, directional
smoothing is applied to C(z,y) over the pixels of M,. The
shadow edge information is used to compute the direction
of the smoothing vector. Finally, the penumbra scale factors
are combined with the umbra scale factors calculated in
Sections 4.2-4.4, to form a complete scale factors field, which
is smooth in the umbra and locally smooth in the
penumbra. The smooth C(z,y) is then used in (4) to
reconstruct the shadow-free image. As can be seen in all the
results in Section 7, the proposed method for handling
penumbra regions works well in preserving the textural
information, without assuming a penumbra model.
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Fig. 16. Shadow removal from a noisy image (refer to Fig. 8c).
(a) Enhancement using local variance adjustment. (b) Enhancement
using local histogram specification.

5 SHADOW-FREE REGION ENHANCEMENT

As discussed in Section 2.3, images undergo various
transformations in the acquisition pipeline and postproces-
sing by imaging software. These transformations often
affect shadow images in a manner that is inconsistent with
shadow removal algorithm assumptions so that artifacts are
introduced in the shadow-free image. An example is shown
in Fig. 9 in which the shadow-free region displays high
contrast compared to the nonshadow region. Furthermore,
noise (e.g., sensor noise) in shadow regions is often
enhanced and emphasized in the shadow-free image (see
Fig. 8c). Thus, there is a need for an enhancement algorithm
that attenuates the noise effects in the shadow-free regions
and attempts to equate their appearance with that of their
nonshadow counterparts.

A successful algorithm for shadow-free region enhance-
ment should fulfill two basic requirements: It must preserve
the original texture in the shadow region and it should be
general enough to handle various types of transformations a
shadow region might undergo, as well as handling shadow-
free regions with noise. In [28], a scheme for shadow
removal is suggested in which the mean and variance of
pixels in shadow regions are adjusted based on pixels of the
corresponding nonshadow surface. While this approach
improves the similarity in appearance of shadow-free
regions and their nonshadow counterparts in many images,
it fails in noisy images. An example is given in Fig. 16a. It can
be seen that although noise is significantly attenuated, the
contrast in the shadow-free region is globally reduced,
producing unpleasing low contrast in the dark regions
between the bricks. To achieve better results, an adaptive
process should be used. In Fig. 16, for example, the noisy
brick regions should be enhanced but the dark regions
between the bricks should be left untouched.

Our proposed method for enhancing shadow-free regions
is based on the assumption that two matching patches, one
inside the shadow-free region and one outside the region,
should have similar statistical behavior. Thus, we perform
histogram specification [37] independently on each patch in the
shadow-free region. Histogram specification allows control
of the pixel statistics of each patch, and more importantly, it is
consistent with the shadow monotonicity property. Denote
by v and v two discrete random variables that take values z;
and y;, with probabilities P,(z;) and P,(y;) (4,7 =0...L — 1),
respectively. We define the following;:
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Fig. 17. Shadow-free image enhancement. (a) Shadow on curved
surface. (b) Shadow-free region enhancement without preserving local
mean values.

l
w 2 ZPu(xi) (11)

and

k
w237 Py)). (12)
=0

Histogram Specification is performed by mapping each
value z; of u to y,, of v such that n; is the smallest for which
Wy, > w;. Note that if the values z; and y; are sorted in
ascending order, the procedure performs a nondecreasing
linear mapping between u and v since, for each pair
z; < xi41, it holds that n; <n;;;, which implies that
Yni < Yn,,,- Such a mapping on the intensities preserves
the original texture. In our implementation, matching of
shadow-free patches to corresponding nonshadow patches
is performed using fast normalized cross correlation [38].
Fig. 16b shows an example of enhancing a shadow-free
region using the patch-based histogram specification
approach. Note that since this enhancement method is
performed on shadow-free images as a postprocessing step,
it can be used following any shadow removal algorithm.

A subtle point in performing the histogram specification
is whether to preserve the original mean value of the
patches in the shadow-free region. It is assumed that the
correct mean values were reconstructed by the shadow
removal algorithm. Thus, it is typically desired to maintain
the mean values of the patches. This is specifically true in
shadow regions cast on curved surfaces where pixel
intensities vary across the shadow region. Fig. 17 displays
an example of enhancing a shadow-free region on a curved
surface when the mean values of shadow-free patches are
allowed to change. In other cases, however, specifically
when removing shadows cast on flat surfaces, performing
histogram specification without preserving the patch mean
values may yield equal or better results. Two examples of
shadow-free region enhancement without preserving mean
values are given in Fig. 26.

6 UsSeErR-GUIDED EXTRACTION OF SHADOW MASKS

Automatic detection of shadow regions in a single image is a
challenging problem and several approaches have been
proposed in recent years, such as [4], [20], [39]. Although in
this work we concentrate in acquiring shadow-free images of
high quality, we propose a simple yet effective method for
extracting the corresponding masks of shadow regions based

Fig. 18. Examples of user-guided extraction of shadow masks based on
region growing and SVM. (a) Shadow images. The circles signify the
supplied shadow and nonshadow observations. (b) Shadow masks
extracted using region growing and SVM.

on user input. Since automation is not our primary concern
but rather the quality of the final output is, requiring the user
to supply initial cues for the system seems reasonable and
may fit well into photo editing software.

Shadow mask derivation is performed by region growing,
using SVM [40] for pixel classification. The RGB color space
is used as the feature space for the SVM, and a supervised
learning problem is constructed by asking the user to
supply the coordinates of pixels (via mouse clicks) in
different shadow and nonshadow regions. The RGB values
within a neighborhood around the supplied coordinates are
considered as shadow and nonshadow observations on
which SVM training is performed. Following training, all
image pixels are classified as shadow or nonshadow. A
region growing phase is initiated with the coordinates of the
shadow observations supplied by the user as initial seeds.
New pixels labeled as shadow are added to the shadow
mask in each region growing iteration. Fig. 18 shows several
examples of shadow masks derived using this method. The
observation vectors were taken as 3 x 3 pixel neighbor-
hoods around the user-selected coordinates. A polynomial
kernel of degree 3 was used for the SVM.

The shadow mask is then used to derive the surround
mask (M, in Section 4.2) by expanding a wide band along
the shadow mask boundaries. In cases where shadow
boundaries coincide with object boundaries (e.g., as occurs
in Fig. 21), an additional object mask is derived in a similar
manner and used for refining the derived shadow and
surround masks.

7 RESULTS

In this section, we give example results of our shadow
removal approach.” We start by examining the ability of the
proposed method to remove nonuniform shadows. Fig. 19
contains a nonuniform shadow cast on a flat surface,
exhibiting little texture. A high-quality shadow-free result is
obtained using our proposed method. Another example of
nonuniform shadow cast on flat surface is given in Fig. 20.
The surface in this example exhibits high-frequency texture.
Fig. 20b contains a shadow-free result obtained assuming a
uniform shadow (i.e., using a global scale factor in umbra
[9]). Tt can be seen that the shadow is not removed

2. High-resolution color images appearing in this section can be viewed
online at http://cs.haifa.ac.il/~hagit/papers/ShadowRemoval.
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Fig. 19. Shadow removal using our proposed method.

completely. The result of our proposed method is given in
Fig. 20c.

Two more examples of shadows cast on flat surfaces are
given in Figs. 21 and 22. Fig. 21 contains nonuniform shadow
with soft regions (the basketball net shadow). Fig. 22 contains
complex nonuniform shadow with soft regions, especially in
the right part of the image. The results of these examples
demonstrate the ability of our proposed method to handle
complex nonuniform shadows with soft shadow regions.

Figs. 23 and 24 contain nonuniform shadows cast on
curved surfaces. Note that the shadow in Fig. 23 has a wide
penumbra and that the shadow in Fig. 24 exhibits high
nonuniformity (see Fig. 24b). Nevertheless, due to the high-
order model proposed in our method, the correct geometry of
the curved surfaces is obtained, yielding high-quality results.

Fig. 25 shows the benefit of using the shadow-free region
enhancement suggested in Section 5. Fig. 25a contains a
nonuniform shadow cast on a textured surface. The shadow-
free region in Fig. 25b has high contrast, as illustrated in Fig. 9.
A more pleasing result is obtained using the proposed
enhancement process, as can be seen in Fig. 25b. Another
example is shown in Fig. 10, which demonstrates how the
enhancement process can compensate for lack of self-
shading. It can be seen in Fig. 10g that the stone texture in
the shadow-free region appears “flat” since self-shading is
absent. The shadow-free enhancement process yields a more
natural shadow-free image as demonstrated in Fig. 10h.
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Fig. 21. Removing nonuniform shadow cast on a flat surface. Note the
nonuniform shadows of the player and the basketball net.

Fig. 22. Complex nonuniform shadow with soft shadow regions.

Fig. 26 compares our method to the methods suggested
in [6] and [8]. Since the methods of [6] and [8] operate in the
gradient domain and a global Poisson equation is solved
during the reconstruction phase, the color balance and
global smoothness of the reconstructed image is affected, as
can be seen in Fig. 26b (taken from [6] and [8]). Fig. 26¢
displays the results of our proposed algorithm while
preserving mean values during the shadow-free enhance-
ment process, and Fig. 26d displays results without
preserving mean values.

(@)

©

Fig. 20. Removing nonuniform shadow cast on flat textured surface. (a) Shadow image. (b) Shadow removal assuming uniform shadow. (c) Shadow
removal using our proposed method. Texture is preserved in the shadow-free region.
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Fig. 23. Removing shadow cast on curved textured surface.

Fig. 27 compares our method with matting approaches:
the method of Levine and Weiss [41] in the top row and Wu
et al. [30] bottom row. Smoothness assumptions inherent to
the approach (as in [41]) strongly affect the texture in the
shadow-free image (Fig. 27b). The bottom row example is
strongly affected by the bumpy texture’s shading, which is
lost in the shadow-free image.

Finally, in Fig. 28, we show that the proposed method
can be used to remove highlight regions in images. Despite
the fact that the highlight region exhibits high nonunifor-
mity, the proposed method can be used without any
changes to recover a highlight-free image.

8 DiscussioN AND FUTURE WORK

Removal of shadows from a single image is a challenging
problem affected by physical phenomena, scene character-
istics, and device parameters, as were reviewed in Section 2.
In light of these issues, a shadow removal algorithm was
introduced in this paper. As demonstrated by a variety of
examples, the method is capable of producing high-quality
results on many types of shadow images, coping with some
of the fundamental problems in shadow removal described
in Section 2. In addition, the proposed shadow-free region
enhancement process can greatly increase algorithm robust-
ness in handling shadow images that have undergone
image processing transformations in shadow regions, as
well as shadow images with noise.

Overall runtime of the algorithm is primarily dependent
on the size of the shadow region. This affects both the
approximation time and the shadow-free region enhance-
ment algorithm. In particular, most of the algorithm
runtime is consumed by the sliding window procedure of

(a)

(b)
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Fig. 25. Shadow removal example: region enhancement (refer to Fig. 9).

the enhancement algorithm in which fast normalized cross
correlation is performed. For images of size 500 x 500 pixels
processed on a 1 GB Pentium 4, a typical run takes several
minutes to complete.

Additional concerns should be addressed such as remov-
ing shadows cast on different types of surfaces and handling
shadow boundaries that coincide with object boundaries.
Examples of shadow boundaries that coincide with object
boundaries can be seen in Figs. 21,25, and 28. In these figures,
the seam between shadow and objects seems artificial.

APPENDIX

An MREF labeling approach is used for determining the
penumbra mask M,. Details can be found in [9]. A brief
summary is given here.

Given an image I and its gradient magnitude field ||VI]|,
define the gradient magnitude distribution image P’ as

Py, = Pr(|VI(z,y)l), (13)

where Pr(||VI(z,y)||) is the probability of the gradient
magnitude at pixel (z,y) in the image.

Labeling penumbra pixels by direct thresholding of P!
produces many false alarms and misses. The suggested
approach exploits pixels with strong evidence of being
edge pixels, and propagates this evidence to their neigh-
boring pixels. Thus, low-evidence pixels are supported by

‘

(©)

Fig. 24. Shadow removal example. (a) Nonuniform shadow cast on curved surface. (b) Shadow-free image assuming uniform shadow. Note the
artifacts and high contrast in the shadow-free region. (c) Shadow-free image using our method and following postprocessing enhancement.
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(a) (b)

(c) (d)

Fig. 26. Comparison of the proposed method with the method of [6] (top row) and [8] (bottom row). (a) and (b) Shadow and shadow-free images
taken from [6] and [8]. (c) Shadow-free image produced by the proposed method. (d) Applying the postprocessing enhancement when mean values

of shadow-free patches are allowed to change.

neighboring edge pixels. We implement this scheme using
a Markov Random Field (MRF) [42] over P!. A unique
random variable is associated with each pixel in P! defined
over {1,0}, denoting whether the underlying pixel should
be labeled as an edge pixel or not, respectively.

Let g,, be the MRF random variable at location (z, y). We
define the posterior energy [42] of the field g as follows:

Z (1= gxy) |:(1 - Pwly) + Z U(Gwys Gay) | + AGays (14)

x,y 9ty eN. Ty

(d) () ()

Fig. 27. Comparison with matting approaches. Top row: comparison with
[41]. Bottom row: comparison with [30]. (a) and (b) Shadow and shadow-
free images taken from sources. (¢) Shadow-free image produced by the
proposed method. (b) and (c) are scaled to show texture.

where NV, represents the 4-neighborhood of pixel (z, y). The
term (1 — P},) is the prior energy related to the probability of
a pixel being an edge pixel. ¥(g,y, gy) is the likelihood energy
of a pixel, which depends on its neighboring pixels:

L, gwy # Goy NP, — PLI <11,
9ty = Gay N|Phy — Pp | > 12,
0, otherwise.

V(Gaty s Gry) = (15)

The defined MRF is parameterized by «, t1, and ¢2.
Parameter o bounds the local energy of a pixel when
labeled as an edge pixel. Parameters t1 and ¢2 are thresh-
olds, t1 < t2. The likelihood energy penalizes for neighbor-
ing pixels differing in label but with similar edge
probabilities, and neighboring pixels of similar label but
differing in edge probabilities.

Equation (14) is minimized over the field g. Given the
minimizing g, penumbra pixels are extracted by finding
binary connected components on g originating from pixels
that appear both in the shadow edge image and in g. Fig. 10c
displays examples of penumbra masks produced using this
approach.

Fig. 28. Highlight removed using our proposed method.
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